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Abstract
A classical upper bound for quantum entropy is identified and illustrated,
0 � Sq � ln(eσ 2/2h̄), involving the variance σ 2 in phase space of the
classical limit distribution of a given system. A fortiori, this further bounds the
corresponding information-theoretical generalizations of the quantum entropy
proposed by Rényi.

PACS numbers: 03.65.Vf, 03.65.Yz, 03.67.−a

1. Introduction

Recurrent problems in four-dimensional BPS black holes focus on the entropic behaviour of the
respective complex structure moduli spaces, and, perhaps independently, on the corresponding
holographic entanglement information lost in decoherence, and associated Hawking radiation
paradoxes [1]. They all rely on the fundamental and dependable statistical concept of entropy,
which accounts collectively for the flow of information in these systems, and for which robust
estimates are needed, in lieu of detailed accounts of quantum states. Ideally, such estimates
would only require gross geometrical and semiclassical features of the system involved and
ignore quantum mechanical interference subtleties.

Classical continuous distributions have been studied in probability and information
theory for quite a long time, and Shannon [2] has derived handy upper bounds for their
entropy, and thus crude least information estimates, in the 1940s. Approximate counting of
quantum microstates, however, is normally toilsome and can be approximated heuristically
by semiclassical proposals [3], which, ultimately, should devolve to a bona fide classical
limit, despite occasional ambiguities and complications along the way [4]. However, a more
systematic approach was initiated by Braunss [5], who appreciated the underlying simplicity
of phase space in taking a classical limit of intricate quantum systems. He thus tracked the
information loss involved in smearing away quantum effects, to argue that the entropy of a
quantum system is majorized by that of its classical limit, as h̄-information of the former is
forfeited in the latter, an intuitively plausible relation.
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The purpose of the present communication is to simply combine the two inequalities into
a general upper bound of the quantum entropy of a system provided essentially by just the
logarithm of the variance in phase space of the classical limit distribution of that system. The
resulting inequality, equation (9), is illustrated simply by the elementary physics paradigm
of a thermal bath of oscillator excitations of one degree of freedom, whose phase-space
representation is an obvious maximal entropy Gaussian.

Note that there is no specific assumption of a particular spectral behaviour—or even of the
existence of a Hamiltonian—for the systems covered by the inequality. Extension to arbitrary
degrees of freedom and tighter bounds contingent on the circumstances of detailed physical
applications are conceptually straightforward, even though specific application to the moduli
phase spaces or holographic entanglement of black holes is reserved for a future, less general,
report.

In passing, and because it fits naturally with the computational technique involved, the
corresponding quantum Rényi entropies [6] are also evaluated explicitly here for the same
prototype system, to illustrate the broad fact that these entropies are majorized by the Gibbs–
Boltzmann entropy, and thus also by the bound discussed here. Rényi-generalized entropies
were originally introduced as a measure of complexity in optimal coding theory [6], and have
been applied to turbulence, chaos and fractal systems, as well as semi-inclusive multiparticle
production [7, 8]; however, apparently, they have not attained significance in black hole physics
yet, nor in current noncommutative geometry efforts.

2. Shannon and Boltzmann–Gibbs entropy in phase space

For a continuous distribution function f (x, p) in phase space, the classical (Shannon
information) entropy is

Scl = −
∫

dx dp f ln(f ). (1)

For a given distribution function f (x, p), without loss of generality centred at the origin,
normalized,

∫
dx dp f = 1, and with a given variance, σ 2 = 〈x2 + p2〉 = ∫

dx dp(x2 + p2)f ,
it is evident from elementary constrained variation of this Scl[f ] w.r.t. f [2] (also see [9]),
that it is maximized by the Gaussian, fg = exp(−(x2 + p2)/σ 2)/σ 2π , to Scl = 1 + ln(πσ 2).

That is, a Gaussian represents maximal disorder and minimal information—in
thermodynamics, least dispersal energy would be available.

Thus, it leads to a standard result in information theory [2], Shannon’s inequality,

Scl � ln(πeσ 2), (2)

which provides an upper bound on the lack of information in such distributions.
Note that, in general, Scl is unbounded above, as it diverges for delocalized distributions,

σ → ∞, containing no information. In contrast to the Boltzmann–Gibbs entropy, it is also
unbounded below, given ultralocalized peaked distributions (σ → 0), which reflect complete
order and information.

In quantum mechanics, the sum over all states is given by the standard von Neumann
entropy [10] for a density matrix ρ,

0 � Sq = −Tr ρ ln ρ = −〈ln ρ〉. (3)

This transcribes in phase space [5, 11] through the Wigner transition map [12] to

0 � Sq = −
∫

dx dp f ln�(hf ), (4)
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where the �-product [11]

� ≡ exp

(
ih̄

2
(
←
∂ x

→
∂ p − ←

∂ p

→
∂ x)

)
(5)

serves to define �-functions, such as the �-logarithm, above, e.g. through �-power expansions,

ln�(hf ) ≡ −
∞∑

n=1

(1 − hf )n�

n
. (6)

Braunss [5] has argued that, for Scl defined by Sq +ln h in the limit that the Planck constant
h̄ → 0,

0 � Sq � Scl − ln h. (7)

The logarithmic offset term relying on the Planck constant h accounts for the scale [3]
of the phase-space area element dx dp in (4). This scale, h, should divide dx dp to yield
a dimensionless phase-space cell. Correspondingly, it should then multiply f , to preserve
‘probability’,

∫
dx dp f = 1, in the Wigner transition map from the density matrix ρ to the

Wigner function f . For example, for a pure state [12],

f (x, p) = 1

h

∫
dy ψ∗

(
x − 1

2
y

)
e−iyp/h̄ψ

(
x +

1

2
y

)
. (8)

The classical limit normally entails variations of phase-space variables on scales much larger
than h̄. Therefore, these variables are normally scaled down to scales matched to such activity.
As illustrated explicitly in the next section, comparing quantum and classical entropies relies
on the above offset. The upper bound in this Braunss inequality reflects the loss of quantum
information involved in the smearing implicit in the classical limit1, effectively regarded as an
extreme limit of subadditivity [3].

Combined with Shannon’s bound, this now amounts to

0 � Sq � ln
(

eσ 2

2h̄

)
, (9)

i.e., the entropy is bounded above by an expression involving the variance of the corresponding
classical limit distribution function. It readily generalizes to multidimensional phase space
(R2N , in which case the logarithm is evidently multiplied by N, in evocation of Bekenstein’s
bound), and contexts where more information (e.g., on asymmetric variances) happens to be
available, or refinement desired.

By virtue of (6), the quantum entropy is recognized as an expansion

Sq =
∞∑

n=1

〈(1 − ρ)n〉
n

=
∞∑

n=1

〈(1 − hf )n�〉
n

. (10)

The leading term, n = 1, 1 − Tr ρ2 = 〈1 − hf 〉, is the impurity [10–12], often referred to as
linear entropy. Like the entropy itself, it vanishes for a pure state [10–12], for which ρ2 = ρ,

1 Readers unfamiliar with the classical limit might find loss of the quantum uncertainty of the theory counterintuitive
and discordant with the loss of information involved. Actually, the resolution to access the uncertainty is sacrificed
in this limit. A standard consequence of the Cauchy–Schwarz inequality for Wigner functions is |f | � 2/h, [12],
reflecting the uncertainty principle: the impossibility of localizing f in phase space, through a delta function. The
best one can do is to take a pillbox cylinder of base h/2 and height 2/h, properly normalized to 1 = ∫

dx dp f . Now,
scaling the phase-space variables down and f up (to preserve this normalization—the volume of the pillbox, as in the
above discussion of the offset) ultimately collapses the base of the pillbox to a mere point in phase space and leads to
a divergent height for f , a delta function, characteristic of a perfectly localized classical particle. However, several
different quantum configurations will reduce to this same limit: it is this extra quantum information on h-dependent
features, e.g. interference, that is obliterated in the limit.
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or, equivalently, f � f = f/h. Each term in the above expansion then projects out ρ, or �hf ,
respectively: pure states saturate the lower bound on Sq .

A likewise additive (extensive) generalization of the quantum entropy is the Rényi
entropy [6],

Rα = 1

1 − α
ln〈ρα−1〉 = 1

1 − α
ln

∫
dx dp

h
(hf )α� , (11)

where the limit α → 1 yields R1 = Sq , and the above-mentioned impurity is 1 − exp(−R2).
For continuous distributions (infinity of components) discussed here, R0 is divergent.

For α � 1, Rα � Rα+1, so Sq � Rα , and it is also bounded below by 0 [6], i.e.,

Sq � Rα � Rα+1 � 0, (12)

so that, a fortiori, the Rényi entropy is also bounded by (9).

3. Gaussian illustration

To illustrate the above inequalities, consider the Gaussian Wigner function of arbitrary half-
variance E,

f (x, p,E) = exp
(− x2+p2

2E

)
2πE

= exp

(
−x2 + p2

2E
− ln(2πE)

)
. (13)

This happens to be the phase-space Wigner transform of a Maxwell–Boltzmann thermal
distribution for a harmonic oscillator [13], in suitably rescaled units, normalized properly to
unity, and with mean energy E = 〈(x2 + p2)/2〉.

Calculation of the entropy of this distribution, is, of course, a freshman physics problem,
but its independent phase-space derivation [14] (also see [15]), is reviewed here, i.e., evaluation
of (4) directly.

For E = h̄/2, the distribution reduces to just f0, the Wigner function for a pure state (the
ground state of the harmonic oscillator). Hence [11, 12],

f0 � f0 = f0

h
, (14)

so that f0 is �-orthogonal to each of the terms in the sum (6), and hence Sq = 0, indicating
saturation of the maximum possible information content.

For generic width E, the Wigner function f is not that of a pure state, but it still happens
to always amount to a �-exponential [16] (ea

� ≡ 1 + a + a � a/2! + a � a � a/3! + · · ·) as well,

hf = e− x2+p2

2E
+ln(h̄/E) = e

− β

2h̄ (x2+p2)+ln( h̄
E

cosh(β/h̄))
� , (15)

where an ‘inverse temperature’ variable β(E, h̄) is useful to define

tanh(β/2) ≡ h̄

2E
� 1 �⇒ β = ln

E + h̄/2

E − h̄/2
. (16)

(Thus the above pure state f0 corresponds to zero temperature, β = ∞.)
Since �-functions, by virtue of their �-expansions, obey the same functional relations as

their non-� analogues, inverting the �-exponential through the �-logarithm and integrating (4)
yields directly the standard thermal physics result,

Sq(E, h̄) = E

h̄
ln

(
2E + h̄

2E − h̄

)
+

1

2
ln

((
E

h̄

)2

− 1

4

)
= β

2
coth(β/2) − ln(2 sinh(β/2)). (17)

Indeed, this can be seen to be a monotonically nondecreasing function of E, attaining the lower
bound 0 for the pure state E → h̄/2 (β → ∞, zero temperature).
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The classical limit, h̄ → 0 (β → 0, infinite temperature) thus follows,

Sq → 1 + ln(E/h̄) = ln(πe2E) − ln h = Scl(E) − ln h, (18)

and is explicitly seen to bound expression (17) for all E, saturating it for large E 
 h̄, in
accordance with Braunss’ bound. That is, the upper bound (9) is saturated for Gaussian
quantum Wigner functions with σ 2 
 h̄.

Note the region E < h̄/2, corresponding to ultralocalized spikes excluded by the
uncertainty principle, was not allowed by the above derivation method, since, in this region,
no �-Gaussian can be found to represent the Gaussian. (It would amount to complex β and
Sq , linked to thermal expectations of the oscillator parity operator.)

Note. An alternate heuristic proposal of [3] for the classical limit of the entropy effectively
starts from the Husimi phase-space representation [12]; it first effectively drops all �H s in (4)
and easily evaluates (1) instead (which is well defined because fH � 0 automatically), before
completing the transition to the classical limit h̄ → 0. It also, ultimately, yields the same
answer (18), since the Husimi representation of the Gaussian Wigner function (13),

fH ≡
∫

dx ′ dp′ exp(−((x ′ − x)2 + (p′ − p)2)/h̄)

πh̄
f (x ′, p′) = exp

(− x2+p2

2E+h̄

)
π(2E + h̄)

, (19)

is also a Gaussian. Utilized to evaluate (1), it yields ln(πe(2E + h̄)), which has the more
direct expression Scl of (18) as its classical limit. (For the ground state, E = h̄/2, which is a
coherent state, this semiclassical entropy reduces to a characteristic minimal value, 1 + ln h.)

By virtue of (15), �-powers of the Gaussian are also straightforward to take, and thus the
Rényi entropies can be readily computed:

Rα = 1

1 − α
ln

(
(2 sinh(β/2))α

2 sinh(αβ/2))

)
= 1

α − 1
ln

((
E

h̄
+

1

2

)α

−
(

E

h̄
− 1

2

)α)
. (20)

Note α → 1 checks with the above (17), R1 → Sq . Also, in the pure state limit, E = h̄/2,
it is evident that Rα = 0 checks for all α � 1. (For α > 1 and the small disallowed values
E < h̄/2, Rα < 0.)

Rα is also a nondecreasing function of E, and, in comportance with (12), a nonincreasing
function of α. Up to an additive, α-dependent constant, the classical limit is identical to that
for the entropy itself,

Rα → ln α

α − 1
+ ln(E/h̄), (21)

in agreement with the classical result of [8]. It may well be that, as in the contexts touched
upon in the introduction, specific αs may well provide more detailed or practical measures of
complexity in Hawking radiation with sparse information available.

If a specific quantum Hamiltonian were actually available for the system in question (a rare
occurrence), then the classical limit of the entropy of the system would be straightforward—
and thus the inequality discussed here would not be that powerful, since the classical entropy
itself would be at hand, in general lower than the Shannon bound.

For such a simple system, the upper-bounding classical entropy would result out of the
phase-space partition function specified by the corresponding classical Hamiltonian (the Weyl
symbol of the quantum Hamiltonian). This is easily illustrated explicitly by Hamiltonians
which are positive Nth powers of the oscillator Hamiltonian, so that, simply,

fcl ∝ exp(−((x2 + p2)/2E)N). (22)
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The bounding classical entropy then reduces by standard thermodynamic evaluation to be
just (1),

Scl = 1

N
+ ln

(
2πE	

(
1 +

1

N

))
, (23)

lower than the corresponding Shannon bound,

1 + ln

(
πE

	(1 + 2/N)

	(1 + 1/N)

)
. (24)
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Note added. A careful reader has identified a technical gap in Braunss’ formal proof of his
inequality in [5], which is, nevertheless, assumed here.
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